
Building the Next Generation of Parallel Applications

Michael A. Heroux

Scalable Algorithms Department

Sandia National Laboratories, USA

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed

Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

A Brief Personal Computing History

CMIC$ DO ALL VECTOR IF (N .GT. 800)

CMIC$1 SHARED(BETA, N, Y, Z)

CMIC$2 PRIVATE(I)

CDIR$ IVDEP

do 15 i = 1, n

z(i) = beta * y(i)

15 continue

endif

#include <mpi.h>

int main(int argc, char *argv[]) {

// Initialize MPI

MPI_Init(&argc,&argv);

int rank, size;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

1988 - 1997 1993 - 2008

2008 - Present

#include <mpi.h>

#include <omp.h>

int main(int argc, char *argv[]) {

// Initialize MPI

MPI_Init(&argc,&argv);

int rank, size;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

…

#pragma omp parallel

{

double localasum = 0.0;

#pragma omp for

for (int j=0; j< MyLength_; j++) localasum += std::abs(from[j]);

#pragma omp critical

asum += localasum;

}

Unification and

composition:

-Vectorization

-Threading

- Multiprocessing

#include <thrust/host_vector.h>

#include <thrust/device_vector.h>

thrust::device_vector<int> vd(10, 1);

thrust::host_vector<int> vh(10,1);

Quiz (True or False)

1. MPI-only has the best parallel performance.

2. Future parallel applications will not have MPI_Init().

3. All future programmers will need to write parallel code.

4. Use of “markup”, e.g., OpenMP pragmas, is the least

intrusive approach to parallelizing a code.

5. DRY is not possible across CPUs and GPUs

6. GPUs are a harbinger of CPU things to come.

7. Checkpoint/Restart will be sufficient for scalable resilience.

8. Resilience will be built into algorithms.

9. MPI-only and MPI+X can coexist in the same application.

10.Kernels will be different in the future.

Basic Exascale Concerns: Trends, Manycore

• Stein’s Law: If a trend cannot

continue, it will stop.
Herbert Stein, chairman of the Council of

Economic Advisers under Nixon and

Ford.

• Trends at risk:

– Power.

– Single core performance.

– Node count.

– Memory size & BW.

– Concurrency expression in

existing Programming

Models.

0

20

40

60

80

100

120

140

160

180

1E+05 1E+06 1E+07

G
ig

a
fl

o
p

s

3D Grid Points with 27pt stencil

Parallel CG Performance 512 Threads
32 Nodes = 2.2GHz AMD 4sockets X 4cores

p32 x t16

p128 x t4

p512 x t1

Edwards: SAND2009-8196

Trilinos ThreadPool Library v1.1.

“Status Quo” ~ MPI-only

5

Strong Scaling Potential

One outcome: Greatly increased interest in OpenMP

Implications

• MPI-Only is not sufficient, except … much of the time.

• Near-to-medium term:

– MPI+[OMP|TBB|Pthreads|CUDA|OCL|MPI]

– Long term, too?

• Long- term:

– Something hierarchical, global in scope.

• Conjecture:

– Data-intensive apps need non-SPDM model.

– Will develop new programming model/env.

– Rest of apps will adopt over time.

– Time span: 20 years.

What Can we Do Right Now?

• Study why MPI was successful.

• Study new parallel landscape.

• Try to cultivate an approach similar to MPI.

MPI Impresssions

8

Dan Reed, Microsoft

Workshop on the Road Map for the

Revitalization of High End

Computing

June 16-18, 2003

Tim Stitts, CSCS

SOS14 Talk

March 2010

“ MPI is often considered the

“portable assembly language” of

parallel computing, …”

Brad Chamberlain, Cray, 2000.

Brad Chamberlain, Cray, PPOPP’06, http://chapel.cray.com/publications/ppopp06-slides.pdf

MPI Reality

11

Tramonto

WJDC

Functional

• New functional.

• Bonded systems.

• 552 lines C code.

WJDC-DFT (Werthim, Jain, Dominik, and Chapman) theory for bonded systems. (S. Jain, A. Dominik, and W.G. Chapman.

Modified interfacial statistical associating fluid theory: A perturbation density functional theory for inhomogeneous complex fluids. J.

Chem. Phys., 127:244904, 2007.) Models stoichiometry constraints inherent to bonded systems.

How much MPI-specific code?

dft_fill_wjdc.c

dft_fill_wjdc.c

MPI-specific

code

MFIX
Source term for

pressure

correction

• MPI-callable, OpenMP-enabled.

• 340 Fortran lines.

• No MPI-specific code.

• Ubiquitous OpenMP markup

(red regions).

MFIX: Multiphase Flows with Interphase eXchanges (https://www.mfix.org/)

source_pp_g.f

Reasons for MPI Success?

• Portability? Yes.

• Standardized? Yes.

• Momentum? Yes.

• Separation of many

Parallel & Algorithms

concerns? Big Yes.

• Once framework in place:

– Sophisticated physics added as serial code.

– Ratio of science experts vs. parallel experts: 10:1.

• Key goal for new parallel apps: Preserve this ratio

Computational Domain Expert Writing MPI Code

Computational Domain Expert Writing Future

Parallel Code

Evolving Parallel Programming Model

18

Parallel Programming Model:

Multi-level/Multi-device

Stateless computational kernels

run on each core

Intra-node (manycore)

parallelism and resource

management

Node-local control flow (serial)

Inter-node/inter-device (distributed)

parallelism and resource management

Threading

Message Passing

stateless kernels

computational

node with

manycore CPUs

and / or

GPGPU

network of

computational

nodes

19
Adapted from slide of H. Carter Edwards

Domain Scientist’s Parallel Palette

• MPI-only (SPMD) apps:

– Single parallel construct.

– Simultaneous execution.

– Parallelism of even the messiest serial code.

• Next-generation applications:

– Internode:

• MPI, yes, or something like it.

• Composed with intranode.

– Intranode:

• Much richer palette.

• More care required from programmer.

• What are the constructs in our new palette?

Obvious Constructs/Concerns

• Parallel for:

– No loop-carried dependence.

– Rich loops.

• Parallel reduce:

– Couple with other computations.

– Concern for reproducibility.

Other construct: Pipeline

• Sequence of filters.

• Each filter is:

– Sequential (grab element ID, enter global assembly) or

– Parallel (fill element stiffness matrix).

• Filters executed in sequence.

• Programmer’s concern:

– Determine (conceptually): Can filter execute in parallel?

– Write filter (serial code).

– Register it with the pipeline.

• Extensible:

– New physics feature.

– New filter added to pipeline.

Other construct: Thread team

• Multiple threads.

• Fast barrier.

• Shared, fast access memory pool.

• Example: Nvidia SM

• X86 more vague, emerging more clearly in future.

Finite Elements/Volumes/Differences

and parallel node constructs

• Parallel for, reduce, pipeline:

– Sufficient for vast majority of node level computation.

– Supports:

• Complex modeling expression.

• Vanilla parallelism.

• Thread team:

– Complicated.

– Requires true parallel algorithm knowledge.

– Useful in solvers.

• Observe: Iteration count increases with number of subdomains.

• With scalable threaded triangular solves

– Solve triangular system on larger subdomains.

– Reduce number of subdomains.

• Goal:

– Better kernel scaling (threads vs. MPI processes).

– Better convergence, More robust.

• Note: App (-solver) scales very well in MPI-only mode.

• Exascale Potential: Tiled, pipelined implementation.

Preconditioners for Scalable Multicore Systems

Strong scaling of Charon on TLCC (P. Lin, J. Shadid 2009)

MPI

Tasks Threads Iterations

4096 1 153

2048 2 129

1024 4 125

512 8 117

256 16 117

128 32 111

25

Factors Impacting Performance of Multithreaded Sparse Triangular Solve, Michael M. Wolf and

Michael A. Heroux and Erik G. Boman, VECPAR 2010, to appear.

MPI Ranks

Level Set Triangular Solver

L

DAG

Permuted

System

Multi-step

Algorithm

Triangular Solve:

• Critical Kernel

- MG Smoothers

- Incomplete IC/ILU

• Naturally Sequential

• Building on classic algorithms:

• Level Sched:

• circa 1990.

• Vectorization.

• New: Generalized.

26

Triangular Solve Results

Sp
e

e
d

u
p

Sp
e

e
d

u
p

Sp
e

e
d

u
p

Sp
e

e
d

u
p

Passive (PB) vs. Active (AB) Barriers: Critical for Performance

AB + No Thread Affinity (NTA) vs. AB + Thread Affinity (TA) : Also Helpful

Nehalem Istanbul

Level sets: Trilinos/Isorropia Core Kernel Timings: Trilinos/Kokkos.27

Thread Team Advantanges

• Qualitatively better algorithm:

– Threaded triangular solve scales.

– Fewer MPI ranks means fewer iterations, better

robustness.

• Exploits:

– Shared data.

– Fast barrier.

– Data-driven parallelism.

Placement and Migration

29

Placement and Migration

• MPI:

– Data/work placement clear.

– Migration explicit.

• Threading:

– It’s a mess (IMHO).

– Some platforms good.

– Many not.

– Default is bad (but getting better).

– Some issues are intrinsic.

Data Placement on NUMA

• Memory Intensive computations: Page placement

has huge impact.

• Most systems: First touch (except LWKs).

• Application data objects:

– Phase 1: Construction phase, e.g., finite element

assembly.

– Phase 2: Use phase, e.g., linear solve.

• Problem: First touch difficult to control in phase 1.

• Idea: Page migration.

– Not new: SGI Origin. Many old papers on topic.

31

Data placement experiments

• MiniApp: HPCCG (Mantevo Project)

• Construct sparse linear system, solve with CG.

• Two modes:

– Data placed by assembly, not migrated for NUMA

– Data migrated using parallel access pattern of CG.

• Results on dual socket quad-core Nehalem system.

32

Weak Scaling Problem

 MPI and conditioned data approach comparable.

 Non-conditioned very poor scaling.
33

Page Placement summary

• MPI+OpenMP (or any threading approach) is best

overall.

• But:

– Data placement is big issue.

– Hard to control.

– Insufficient runtime support.

• Current work:

– Migrate on next-touch (MONT).

– Considered in OpenMP (next version).

– Also being studied in Kitten (Kevin Pedretti).

• Note: This phenomenon especially damaging to

OpenMP common usage.

34

Transition: MPI-only to MPI+[X|Y|Z]

35

Parallel Machine Block Diagram

Memory

Core 0 Core n-1

Node 0

Memory

Core

0
Core n-1

Node 1

Memory

Core 0 Core n-1

Node m-1

– Parallel machine with p = m * n processors:

• m = number of nodes.

• n = number of shared memory processors per node.

– Two ways to program:

• Way 1: p MPI processes.

• Way 2: m MPI processes with n threads per MPI process.

- New third way:

• “Way 1” in some parts of the execution (the app).

• “Way 2” in others (the solver).
36

Multicore Scaling: App vs. Solver

Application:
• Scales well

(sometimes superlinear)

• MPI-only sufficient.

Solver:
• Scales more poorly.

• Memory system-limited.

• MPI+threads can help.

* Charon Results:

Lin & Shadid TLCC Report
37

MPI-Only + MPI/Threading: Ax=b

App
Rank 0

App
Rank 1

App
Rank 2

App
Rank 3

Lib
Rank 0

Lib
Rank 1

Lib
Rank 2

Lib
Rank 3

Mem
Rank 0

Mem
Rank 1

Mem
Rank 2

Mem
Rank 3

Multicore: “PNAS” Layout

Lib
Rank 0

Thread 0 Thread 1 Thread 2 Thread 3

App passes matrix and vector values to library data classes

All ranks store A, x, b data in memory visible to rank 0

Library solves Ax=b using shared memory algorithms

on the node.

38

MPI Shared Memory Allocation

Idea:

• Shared memory alloc/free
functions:

– MPI_Comm_alloc_mem

– MPI_Comm_free_mem

• Predefined communicators:
MPI_COMM_NODE – ranks on node

MPI_COMM_SOCKET – UMA ranks

MPI_COMM_NETWORK – inter
node

• Status:
– Available in current development

branch of OpenMPI.

– First “Hello World” Program
works.

– Incorporation into standard still
not certain. Need to build case.

– Next Step: Demonstrate usage
with threaded triangular solve.

• Exascale potential:
– Incremental path to MPI+X.

– Dial-able SMP scope.

39

int n = …;

double* values;

MPI_Comm_alloc_mem(

MPI_COMM_NODE, // comm (SOCKET works too)

n*sizeof(double), // size in bytes

MPI_INFO_NULL, // placeholder for now

&values); // Pointer to shared array (out)

// At this point:

// - All ranks on a node/socket have pointer to a shared buffer (values).

// - Can continue in MPI mode (using shared memory algorithms) or

// - Can quiet all but one:

int rank;

MPI_Comm_rank(MPI_COMM_NODE, &rank);

if (rank==0) { // Start threaded code segment, only on rank 0 of the node

…

}

MPI_Comm_free_mem(MPI_COMM_NODE, values);

Collaborators: B. Barrett, Brightwell, Wolf - SNL; Vallee, Koenig - ORNL

Resilient Algorithms

40

My Luxury in Life (wrt FT/Resilience)

The privilege to think of a computer as a

reliable, digital machine.

41

“At 8 nm process technology, it will be harder

to tell a 1 from a 0.”

(W. Camp 2008, 2010)

Users’ View of the System Now

• “All nodes up and running.”

•Certainly nodes fail, but invisible to user.

•No need for me to be concerned.

•Someone else’s problem.

42

Users’ View of the System

Future

•Nodes in one of four states.

1. Dead.

2. Dying (perhaps producing faulty results).

3. Reviving.

4. Running properly:

a) Fully reliable or…

b) Maybe still producing an occasional bad result.

43

Faults: Hard vs. Soft

• Hard:

– Program flow interrupted.

– Majority of faults.

– Presently handled by (global) checkpoint/restart.

– Numerous papers on alternatives.

• Soft:

– Program flow continues.

– Minor perturbations in data state:

• Incorrect address lookup (but still in user scope).

• Incorrect FP value.

Algorithm-Based (Hard) Fault Tolerance

•Numerous approaches.

•Most common strategies:

–Meta data:

• Embed meta data into user-defined data

structures.

• Manage fault detection, recovery manually.

–Algorithm results validation:

• Use known algorithm properties.

• Validate computed to known (e.g., residual

check).

•Note: A lack of app awareness.
45

Madame President,

although there was

some rough

weather, our fault

tolerant linear

solver worked and I

have returned with

our portion of the

linear solution.

Thank you, but we

lost nonlinear

state and cannot

use your results.

Common Approach to FT

(Diplomacy Analogy)

We have linearized our

portion of the nonlinear

problem and would like

you to negotiate a

global linear solution

with the other

processors.

Yes, Madame

President. I will

return with our

portion of the

global linear

solution, ASAP.

Thank you, but we

recovered

nonlinear state

and sent out a

new diplomat who

already returned.

Thank you, we

recovered

nonlinear state, the

linear solution is

expensive. We can

use your results.

Hard Error Futures

• C/R will continue as dominant approach:

– Global state to global file system OK for small systems.

– Large systems: State control will be localized, use SSD.

• Checkpoint-less restart:

– Requires full vertical HW/SW stack co-operation.

– Very challenging.

– Stratified research efforts not effective.

Soft Error Futures

• Soft error handling: A legitimate algorithms issue.

• Programming model, runtime environment play role.

Consider GMRES as an example of how soft

errors affect correctness

• Basic Steps

1) Compute Krylov subspace (preconditioned sparse matrix-

vector multiplies)

2) Compute orthonormal basis for Krylov subspace (matrix

factorization)

3) Compute vector yielding minimum residual in subspace

(linear least squares)

4) Map to next iterate in the full space

5) Repeat until residual is sufficiently small

• More examples in Bronevetsky & Supinski, 2008

49

Why GMRES?

•Many apps are implicit.

•Most popular (nonsymmetric) linear solver is

preconditioned GMRES.

•Only small subset of calculations need to be

reliable.

– GMRES is iterative, but also direct.

50

Every calculation matters

• Small PDE Problem: Dim 21K, Nz 923K.

• ILUT/GMRES

• Correct computation 35 Iters: 343M FLOPS

• Two examples of a single bad floating point op

Description Iterations FLOPS Recursive

Residual Error

Solution Error

All Correct Calcs 35 343M 4.6e-15 1.0e-6

Iter=2, y[1] += 1.0

SpMV incorrect

Ortho subspace

35 343M 6.7e-15 3.7e+3

Q[1][1] += 1.0

Non-ortho subspace

N/C N/A 7.7e-02 5.9e+5

51

One possible approach is transactional computation

• Database transactions: atomic

• Transactional memory: atomic memory operation

• Transactional computation:

– Designated sensitive computation region (orthogonalization

step in GMRES)

– Guarantee accurate computation or notify user.

52

Needs to be coupled with SW-

enabled guaranteed data regions

• User-designated reliable data region

• Extra protection to improve reliable data storage and

transfer

• Examples

– Original input data (needed for verification)

– Linear solver: A, x, b

– Orthogonal vectors for GMRES

• OpenMP pragma-enabled?

53

Goal

• Algorithms well-conditioned wrt soft failure.

• Now:

– Single soft error produces erroneous results.

• Goal:

– Correct results always.

– Cost increase proportional to number of soft errors.

• Note: These are just two approaches to ABFT.

54

Software Development and Delivery

55

Compile-time Polymorphism
Templates and Sanity upon a shifting foundation

56

“Are C++ templates safe? No, but they are good.”

Software delivery:

• Essential Activity

How can we:

• Implement mixed precision algorithms?

• Implement generic fine-grain parallelism?

• Support hybrid CPU/GPU computations?

• Support extended precision?

• Explore redundant computations?

• Prepare for both exascale “swim lanes”?

C++ templates only sane way:

• Moving to completely templated Trilinos
libraries.

• Other important benefits.

• A usable stack exists now in Trilinos.

Template Benefits:

– Compile time polymorphism.

– True generic programming.

– No runtime performance hit.

– Strong typing for mixed precision.

– Support for extended precision.

– Many more…

Template Drawbacks:

– Huge compile-time performance hit:

• But good use of multicore :)

• Eliminated for common data types.

- Complex notation:

- Esp. for Fortran & C programmers).

- Can insulate to some extent.

Solver Software Stack

Bifurcation Analysis LOCA

DAEs/ODEs:

Transient Problems

Rythmos

Eigen Problems:

Linear Equations:

Linear Problems

AztecOO

Ifpack, ML, etc...

Anasazi

Vector Problems:

Matrix/Graph Equations:

Distributed Linear Algebra Epetra

Teuchos

Optimization

MOOCHO
Unconstrained:

Constrained:

Nonlinear Problems
NOX

S
e

n
s
it

iv
it

ie
s

(A
u

to
m

a
ti

c
 D

if
fe

re
n

ti
a

ti
o

n
:

S
a

c
a

d
o

)

Phase I packages: SPMD, int/double Phase II packages: Templated

57

Solver Software Stack

Bifurcation Analysis

DAEs/ODEs:

Transient Problems

Rythmos

Eigen Problems:

Linear Equations:

Linear Problems
AztecOO

Ifpack,

ML, etc...

Anasazi

Vector Problems:

Matrix/Graph Equations:

Distributed Linear Algebra Epetra

Optimization

MOOCHO
Unconstrained:

Constrained:

Nonlinear Problems
NOX

S
e

n
s
it

iv
it

ie
s

(A
u

to
m

a
ti

c
 D

if
fe

re
n

ti
a

ti
o

n
:

S
a

c
a

d
o

)

LOCA

Phase I packages Phase II packages

Teuchos

T-LOCA

Belos*

Tpetra*

Kokkos*

T-Ifpack*,

T-ML*, etc...

T-NOX

Phase III packages: Manycore*, templated

58

Trilinos/Kokkos Node API

59

Generic Shared Memory Node

• Abstract inter-node comm provides DMP support.

• Need some way to portably handle SMP support.

• Goal: allow code, once written, to be run on any parallel

node, regardless of architecture.

• Difficulty #1: Many different memory architectures

– Node may have multiple, disjoint memory spaces.

– Optimal performance may require special memory

placement.

• Difficulty #2: Kernels must be tailored to architecture

– Implementation of optimal kernel will vary between archs

– No universal binary  need for separate compilation paths

60

Kokkos Node API

• Kokkos provides two main components:

– Kokkos memory model addresses Difficulty #1

• Allocation, deallocation and efficient access of memory

• compute buffer: special memory used for parallel computation

• New: Local Store Pointer and Buffer with size.

– Kokkos compute model addresses Difficulty #2

• Description of kernels for parallel execution on a node

• Provides stubs for common parallel work constructs

• Currently, parallel for loop and parallel reduce

• Code is developed around a polymorphic Node object.

• Supporting a new platform requires only the

implementation of a new node type.

61

Kokkos Memory Model

• A generic node model must at least:

– support the scenario involving distinct device memory

– allow efficient memory access under traditional scenarios

• Nodes provide the following memory routines:
ArrayRCP<T> Node::allocBuffer<T>(size_t sz);

void Node::copyToBuffer<T>(T * src,

ArrayRCP<T> dest);

void Node::copyFromBuffer<T>(ArrayRCP<T> src,

T * dest);

ArrayRCP<T> Node::viewBuffer<T> (ArrayRCP<T> buff);

void Node::readyBuffer<T>(ArrayRCP<T> buff);

Kokkos Compute Model

• How to make shared-memory programming generic:

– Parallel reduction is the intersection of dot() and norm1()

– Parallel for loop is the intersection of axpy() and mat-vec

– We need a way of fusing kernels with these basic constructs.

• Template meta-programming is the answer.

– This is the same approach that Intel TBB and Thrust take.

– Has the effect of requiring that Tpetra objects be templated on Node type.

• Node provides generic parallel constructs, user fills in the rest:

template <class WDP>

void Node::parallel_for(

int beg, int end, WDP workdata);

template <class WDP>

WDP::ReductionType Node::parallel_reduce(

int beg, int end, WDP workdata);

Work-data pair (WDP) struct provides:

• loop body via WDP::execute(i)

Work-data pair (WDP) struct provides:

• reduction type WDP::ReductionType

• element generation via WDP::generate(i)

• reduction via WDP::reduce(x,y)

63

Example Kernels: axpy() and dot()

template <class WDP>

void

Node::parallel_for(int beg, int end,

WDP workdata);

template <class WDP>

WDP::ReductionType

Node::parallel_reduce(int beg, int end,

WDP workdata);

template <class T>

struct AxpyOp {

const T * x;

T * y;

T alpha, beta;

void execute(int i)

{ y[i] = alpha*x[i] + beta*y[i]; }

};

template <class T>

struct DotOp {

typedef T ReductionType;

const T * x, * y;

T identity() { return (T)0; }

T generate(int i) { return x[i]*y[i]; }

T reduce(T x, T y) { return x + y; }

};

AxpyOp<double> op;

op.x = ...; op.alpha = ...;

op.y = ...; op.beta = ...;

node.parallel_for< AxpyOp<double> >

(0, length, op);

DotOp<float> op;

op.x = ...; op.y = ...;

float dot;

dot = node.parallel_reduce< DotOp<float> >

(0, length, op);

64

Hybrid CPU/GPU Computing

65

Hybrid Timings (Tpetra)

• Tests of a simple iterations:

• power method: one sparse mat-vec, two vector operations

• conjugate gradient: one sparse mat-vec, five vector operations

• DNVS/x104 from UF Sparse Matrix
Collection (100K rows, 9M entries)

• NCCS/ORNL Lens node includes:

• one NVIDIA Tesla C1060

• one NVIDIA 8800 GTX

• Four AMD quad-core CPUs

• Results are very tentative!

• suboptimal GPU traffic

• bad format/kernel for GPU

• bad data placement for threads

Node
PM

(mflop/s)
CG

(mflop/s)

Single thread 140 614

8800 GPU 1,172 1,222

Tesla GPU 1,475 1,531

Tesla + 8800 981 1,025

16 threads 816 1,376

1 node
15 threads + Tesla 867 1,731

2 nodes
15 threads + Tesla 1,677 2,102

66

New Core Linear Algebra Needs

Advanced Modeling and Simulation Capabilities:

Stability, Uncertainty and Optimization

• Promise: 10-1000 times increase in parallelism (or more).

• Pre-requisite: High-fidelity “forward” solve:

– Computing families of solutions to similar problems.

– Differences in results must be meaningful.

SPDEs: Transient

Optimization:

- Size of a single forward problem

Lower Block

Bi-diagonal

Block

Tri-diagonal

t0

t0

tn

tn

Advanced Capabilities:

Readiness and Importance

Modeling Area Sufficient

Fidelity?

Other concerns Advanced

capabilities priority

Seismic

S. Collis, C. Ober

Yes. None as big. Top.

Shock & Multiphysics

(Alegra)

A. Robinson, C. Ober

Yes, but some

concerns.

Constitutive models,

material responses

maturity.

Secondary now. Non-

intrusive most

attractive.

Multiphysics

(Charon)

J. Shadid

Reacting flow w/

simple transport,

device w/ drift

diffusion, …

Higher fidelity, more

accurate multiphysics.

Emerging, not top.

Solid mechanics

K. Pierson

Yes, but… Better contact. Better

timestepping. Failure

modeling.

Not high for now.

Advanced Capabilities:

Other issues

• Non-intrusive algorithms (e.g., Dakota):

– Task level parallel:

• A true peta/exa scale problem?

• Needs a cluster of 1000 tera/peta scale nodes.

• Embedded/intrusive algorithms (e.g., Trilinos):

– Cost of code refactoring:

• Non-linear application becomes “subroutine”.

• Disruptive, pervasive design changes.

• Forward problem fidelity:

– Not uniformly available.

– Smoothness issues.

– Material responses.

Advanced Capabilities:

Derived Requirements

• Large-scale problem presents collections of related subproblems with

forward problem sizes.

• Linear Solvers:

– Krylov methods for multiple RHS, related systems.

• Preconditioners:

– Preconditioners for related systems.

• Data structures/communication:

– Substantial graph data reuse.

Ax b AX B, Axi bi , Aixi bi

Ai A0 Ai

pattern(Ai) pattern(A j)

Summary

• App targets will change:

– Advanced modeling and simulation: Gives a better answer.

– Kernel set changes.

• Resilience requires an integrated strategy:

– Most effort at the system/runtime level.

– C/R (with localization) will continue at the app level.

– Resilient algorithms will mitigate soft error impact.

• Building the next generation of parallel applications requires

enabling domain scientists:

– Write sophisticated methods.

– Do so with serial fragments.

– Fragments hoisted into scalable, resilient fragment.

Quiz (True or False)

1. MPI-only has the best parallel performance.

2. Future parallel applications will not have MPI_Init().

3. All future programmers will need to write parallel code.

4. Use of “markup”, e.g., OpenMP pragmas, is the least

intrusive approach to parallelizing a code.

5. DRY is not possible across CPUs and GPUs

6. GPUs are a harbinger of CPU things to come.

7. Checkpoint/Restart will be sufficient for scalable resilience.

8. Resilience will be built into algorithms.

9. MPI-only and MPI+X can coexist in the same application.

10.Kernels will be different in the future.

